

Effects of canopy openings on adjacent forest matrix

Justin E. Arseneault

Department of Forestry and Natural Resources, Purdue University, 715 State Street, West Lafayette, IN, 47907 jearsene@purdue.edu

Abstract – Do canopy gaps affect matrix?

- Objective #1: Conduct a decadal review of disturbance-based silviculture effects in terms of forest growth and regeneration
- Objective #2: Determine if responses in canopy opening gaps differ from those in adjacent forest matrix

Introduction – Lack of "disturbance-based" silviculture knowledge and research

- Premise: Forest species adapt to natural disturbance regimes that occur in their ecosystem^{1,2}
- Conclusion: Silviculture producing patterns within limits of natural variability maintain ecosystem processes and biodiversity³
- Problem: "Disturbance-based" systems relatively recent and effects not well understood

Materials and Methods – Acadian Forest Ecosystem Research Program (AFERP)

- Site: Penobscot Experimental Forest, Bradley, Maine.
- Design: Complete randomized block
 9 experimental units (8.7 to 11.3 ha)

- Data used:
 - Overstory and saplings: Species, DBH, Condition
 - Regeneration: Species and Density
 - Importance Values (IV)

Treatment	Disturbance Frequency (yr-1)	Area Treated in Harvest	Gap Regeneration Period	Compositional Goal
Large-Gap	2% (1st 50 years onl	20% (y)	10 yr	mid-successional
Small-Gap	1%	10%	20 yr	late-successional
Control	natural only	0%	Natural	natural succession

Result - Gaps affect adjacent matrix

- Balsam fir, hemlock, and red maple dominated all strata and treatments
- Red maple replaced balsam fir as most dominant species in gap strata for seedlings and saplings
- No overstory or sapling differences in forest matrix across all treatments
- White pine generally increases in edge and gap relative to matrix

m	Overstory		Sapling		Seedling		
Treatment	Edge	Gap	Edge	Gap	Matrix	Edge	Gap
Small Gap							
Aspen	-	+	++	+++	0	0	+
Birch	-	0	0	0	0	+++	+
White Pine	0	+++	++	+++	+++	+++	+++
Red Maple	+	0		+++	+	0	0
Spruce	+	+++	0	+++	0	0	0
Fir	-	+	0				
Hemlock	0	+	+	+++	++	++	++
Large Gap							
Aspen	0	0	0	++	0	0	+++
Birch	0	0	-	0	0	+++	0
White Pine	0	0	+++	++	+++	+++	+
Red Maple	0	0	+++	+++	+	+++	-
Spruce	-		0	0	0	++	0
Fir	+	++	0				-
Hemlock	0		0		++	++	+++

Change in Importance Values ([Rel. Freq + Rel. Dom. + Rel. Dens.] / 3)

A IV: 0 - 5 = 0	5 - 10 = -1 +	10 - 20 = ++	>20 = +++

Discussion / Conclusion – Gaps affect adjacent matrix. More research needed.

Treatments:

- Gaps impact adjacent forest matrix
- Largest effect is on sapling recruitment
- Favored compositional goal species, but also competitors
- Low power, but observations consistent with knowledge of species responses in Acadian forest
- Evidence sufficient for further investigation

Practical Implications:

- Disturbance-based systems differ from traditional silviculture
- Implementation varies over time/space, which changes proportion of forest matrix affected by gaps
- These studies valuable for development and calibration of growth models.
- Understanding canopy openings = better design and implementation of disturbance-based systems

References

Hessburg, P.F., Smith, B.G., Salter, R.B., 1999. Detecting change in forest spatial patterns from reference conditions. Eco. App. 9, 1232 252.

² McRae, D.J., Duchesne, L.C., Freedman, B., Lynham, T.J., Woodley, S., 2001. Comparisons between wildfire and forest harvesting and their invalidations in forest mean company. Environ. Page 9, 223-260.

aymond, P., Bédard, S., Roy, V., Larouche, C., Tremblay, S., 2009. Review, classification, and potential application to forests affected

Rackeround image: Dr. John Ranson, http://earthobservatorv.nasa.eov/bloes/fromthefield/2009/08/nase/